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ANALYSIS OF STEADY SOLUTIONS 
OF INVARIANT QUASI-LINEAR THIRD ORDER EQUATiONS* 

M. Ia. IVANOV and F. A. SLOBODKINA 

Singularities of solutions with steady structure of divergent quasi-linearLhirdorder 
equations proposed in /I/ are investigated. These equations written far functions 
of two independent variables, viz. space coordinate and time, simulate physical. pro- 
cesses with dissipation and nonlinear and or;cillatory effects. They define, in 
particular, unsteady potential motions in a layer of i.ncompreasible fluid with a 
free surface, for instance, unsteady plane jets or surface waves on shallow water, 
Another domain of their application is the investigation of properties of certain 
difference schemes of second order approximation in which similar equations are ob- 
tained as respective differential approximations of investigated schemes. 

Steady solutions of such equations are qualitatively analyzed below in the phase plane. 
Interrelation between the properties of invariance and symmetry of solutions is established, 
and the possibility of passing to the limit of respective generalized solutions of the quasi- 
linear first order equation is investigated. Cases in which steady solutions exist in a 
moving coordinate system f which define the shock wave front and, also, steady solutions of-the 

solitone (solitary wave) type are indicated. Numerical results of integration of unsteady in- 

put equations that confirm the results of qualitative analysis are presented for some of the 
investigated variants of steady solutions. 

1. Consider the divergent invariant quasi-linear equations of the foLlox&ng type: 

(1.1) 

when a = censt > 0, E = const > 0 , and p = con& are of arbitrary sign, This equation can be 
taken as some third order xegularizer for the quasi-linear first order equation 

or for the Burgers equation 

which maintains the fully determined invariance properties of these equations. ~11 t.hese 

equations are invariant to the geometric group of Poincard transforms /l/. 
The physical process described by Eq.(l.l) is characterized by the effects of nonlinear- 

ity of ~8% which also appear in (1,2) and f1,3) I of dissipation of au,, appearing 133 (1.31, 
af "quadratic viscosity" e (a,?$, oscillatory effects related to the presence of the term 

Butxx when 13 > 0, and to some effectis inherentofthe WidelyusedXarteweg-deVriesEguation/Z/ 
and of the regularized equation for long WaYQs (terms fi (uu,& and B&, for B < 0). 

Let us show that the invariant third order equation of form (1.1) defines unsteady pot- 
ential motion in a layer of incompressible inviscid fluid with free surface. 

Consider the layer of inviscid incompressible fluid of finite thickness and bounded on 
ane side by the plane (x,, fp) which is either a wall or a plane of symmetry, and from the 
other by the free surface y =h(x.t) with the y-axis directed vertically upward. we shall 

proceed from the following conventional system of equations and boundary conditions /4-b/: 

the Laplace equation 

the kinetic and dynamic boundary conditions at the free surface 
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and the boundary condition for the potential at y=o 

'pv = 0 

where t is the time, x = (z,,xJ is the vector coordinate in the horizontal plane, 
unit vectors of coordinate axes x1, z,,respectively, cp(x,y, t) is the potential of 

and g is the free fall acceleration. 
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(1.5) 

(1.6) 

(1.7) 
. . 
11, 1; are 
velocities, 

All quantities in (1.4)- (1.7) are assumed dimensionless, normalized with the use of 

formulas 

x1 = x1%, xp = x,%, y = yOlh,, t = ct”ll, h = ho/ho, cp = (p" / (cl), g = g='h,lc= 

where the small O Superscript denotes dimensional parameters, 1 is a characteristic dimension 

of length relative to the x1 and xg Coordinates, ho is a characteristic dimension of length 

relative to the y-coordinate (e.g., the mesn layer thickness), and c is the characteristic 

speed. 
As in /4-66/, it is assumed below that the dimenSionleSS geometric parameter p = hgll’ 

is small. However unlike in /4-66/,wedonotassume a priori the smallness of another para- 

meter, the velocity ratio v&, where v0 is the characteristic velocity of particles on the 
fluid surface, and c is the characteristic rate of the process (e.g., in the case of waves 
on the surface of shallow water it is possible to take the wave propagation limit velocity 

v& for c). 
using (1.4)- (1.7) we obtain in the usual way /4-66/ the simplified equations for some 

specific case. Let us consider the two-dimensional motion of a fluid layer in the plane (x, y). 
Solution of the Laplace equation (1.4) that satisfies boundary condition (1.7) can be repres- 
ented as an expansion in powers of y /5,6/ 

where function f depends only on variables xand t. Substituting (1.8) into the boundarycon- 
ditions at the free surface (1.5) and (1.6) and introducing the horizontal velocity JJ = f, 
we obtain the system of equations 

h, + (uh),-- [(hu&-+- hu-] 10, uf + uu,+ &-$lh'(u,,+ uu,x-u=*)lx=O (1.9) 

accurate to 0 (B") - Fiy rejecting the last termscontainingparameter @ as a multiplier, we 
obtain the equation of shallow water /4,5,7/ which defines orie-dimensional wave propagation 
over a horizontal floor. Equations (1.9) represent the subsequent approximation which includ- 
es a dispersion correction for one-dimensional waves, and can be treated as some expanded 
variant of Boussinesq equations /4-66/. 

Let the free surface h(x, t) be subjected to slight perturbations. By substituting the 
mean value h,, for the correction terms h(x, t) which are proportional to p, we obtain in- 
stead of (1.9) a model system which in the absence of gravity can be successively solved. The 
second equation then assumes the form of an invariant quasi-linear equation of type (l.l)with 
a =0 

u1+ ~~~x-~&n--B*%sx + (8,/2)(%Q),=0 (B,=m&?) (1.10) 

We stress that the last two terms that take into account nonlinearity of higher approx- 
imations have been retained in (1.10). 

Equation (1.10) simulates one-dimensional unsteady motions in a layer of incompressible 
inviscia fluid in the absence of external mass forces. It can be used for defining the prop- 
agation of unsteady plane jets of perfect weightless fluid in space at constant pressure. 

It shauld be pointed out that in the derivation of the Korteweg-de Vries equation,which 
defines a quasi-simple wave in the presence of dispersion, from the Boussinesq equations,only 
waves moving inthechosen direction are taken into consideration /4-66/. In the obtained 
third order equation of the form ut + uu, + ~ZJ- = 0 the property of invariance relative ai- 
rection change Mmultaneous substitution of -_I for x ana -u for u 1 is violated. 

Note that the third order equation similar to (1.1) appears in investigations of some 
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difference scheme of second order approximations as a differential approximation of such 
schemes /S,9/, when they are used in the numerical integration of Eq.(1.2). Knowledgeofsuch 
equations is useful in the study of causes of the appearance oscillations of numerical solu- 
tions in the domain of large gradients of considered functions. 

This can be illustrated on the example of numerical solution of the simplest quasi-linear 
equation (1.2) using the different scheme of running calculations of second order approxima- 
tion /lo/. The respective differential approximation of the scheme (on condition that the 
integration step z with respect to time is substantially smaller than the space coordinate 
step h) is of the form 

accurate within 0 (he), an d coincides with the left-hand side of Eq.tl.1) except for the con- 
stant coefficients at higher derivatives. 

2. Let Eq.(l.lf have steady solutions in the coordinate system moving at constant vel- 
ocity U relative to the initial one. 

We introduce the new coordinate X =x - Ut and write down the equation that definesthe 
steady solutions of Eq.cl.1) in the system of coordinates (X, t) which after a single inte- 
gration with respect to X yields 

where C is the arbitrary constant of integration. We set for simplicity C = 0 and intro- 
duce in (2.1) the new unknown function v=l&-- U. AS the result we obtain the equivalent 
system of two first order equations 

au dp 2ap - zsp - UZ f C'Z (2.2) 
dX=Pz dX= 

zffv 

Solutions of Eqs.(2.2)are symmetric relative to the vertical axis v = 0 of the phase 

plane, which is due to the appearance in the denominator of the right-hand sideofthesecond 
equation of factor v and is the consequence of the invariance properties of the third order 
input equation (1.1) relative to the geometric group of Poincar6 transforms /I/. The term v' 
in the numerator of the right-hand side of these same equation is related to the presence in 
(1.1) of the nonlinear term UU, . When ct = 0 the pattern of integral curves is also sym- 
metric about the horizontal axis p = 0 owing to the use in (1.1) of the specific form of 
the term E (u,~),; when a#0 this symmetry is violated. 

The right-hand sides of equations of system (2.2) imply that this system has two pairs 
of singular points whose coordinates are determined by conditions 

If3,o - -0, po,n =(aTvd, 2&U2) (?E)-’ 
(2.4) 

Singularities with coordinates (2.3) reduce the right-hand sides of bothequdtions (2.21 
to zero. In the space (v, p, X) the integral curves may pass through these singular points 
when X-too or X-t-CQ. 

Singularities with coordinates (2.4) occur only in the second equation of system (2.21, 
while the right-hand side of the first equation remains finite in the neigborhood Of these 

singularities. Because of this there are two straight lines in space (v, p, X) which areparal- 
lel to the X-axis. Each point of these straights are singular points of equationsof System 

(2.2). Thus the integral curves may pass in space (v, p, X) through singular points (2.4) for 

any finite X. 
Let us investigate the dependence of properties of singular points with coordinates (2.3) 

and (2.41 on coefficients a, @, e, U in the right-hand sides of Bqs.(2.2). Let US, first, 
consider singularities appearing on the v-axis when conditions (2.3) are satisfied. For 

this we linearize the expressions in the right-hand sides of Eqs.(2.2) in the neighborhood of 
singular points with coordinates (2.3), construct the respective secular equation, and deter- 

mine its roots 

(2.5) 

The roots Al,* must be calculated for v = &U for each region respectively. It follows 
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from (2.5) that for @>O; aa >4pB each point with coordinates v = + LF,p = 0 (subsequent- 
ly denoted by the numeral 1) represents a node with positive characteristic direction @I > 
%>O), and the singular point with coordinates v= - u, p =0 (denoted below by the numeral 
2) is a node with negative characteristic directions (he&,( 0); when a'>k$p we have 
in 1 and 2 degenerated nodes with positive and negative characteristic directions, respectiv- 
ely; when aa<4fiP both singularities are of the focus type, and when a =5 0 both singul- 
arities are of the center type. When p<O the singular points I and 2 are saddles for any 
a and V, since a<$Jw- 

The solution of equations of system (2.21 in the neighborhood of singularities (2.3) im- 
plies that when singularities I and 2 are nodes, foci or centers, X-+ - 00 corresponds to 
singular point 1, and X-+ + oo to singular point 2. When singularities I and 2 are saddle 
points, there are two integral curves (one with positive and the other with negative charact- 
eristic direction) which pass through point 1, and two similar ones that pass through point 
2. In the space (v, p, X) it is possible to move out from point 1, along the integral curve 
h,>O , which Shows that to that integral curve at point 1 corresponds X-t-a+ and 

along the second integral curve it is possible to enter point 1, i.e. to it corresponds 
X-+fQO. The situation at point 2 is similar. 

Let us investigate the properties of singularities on the p-axis, which occur when con- 
ditions (2.4) are satisfied. We denote the point with coordinates v =.O, p = pa by the 
numeral 3 and #at with coordinates v = 0,~ ==pI by the numeral 4. To do this we linearize 
the denominator and numerator in the right-hand side of the second equation in the neighbor- 
hood of singularities 3 and 4, using the expression Au== PAX for the increments of V. We 
obtain the equation 

dAp (2a - 4s~) AP 
m= @PAI 

(2.6) 

for which we write a secular equation whose roots are 

& = 2#3p, & = 2a -44ep (2.7) 

Substituting in (2.7) the value of coordinate ps at point 3 and p, at point 4, we find 
that when fi>O both singularities the properties of a saddle , and at point 3 and 4 &<O, 
&,> 0 and h,> 0, &,c 0, respectively; when PC0 we have at point 3 a singularityofthe 
node type with &>O, &>O,and at point 4 a singularity of the node type with &CO, k&k 

When a=0 there remains only one singular point 3 with coordinate 
which for fi>O is a saddle with a< 0, &>O, and when @< 0 a saddle w?g -&~~~~> 
0. If with e =0 also a =O,i.e. the dissipative effects are absent, hence there are no 

singular points (2.4) on the p-axis. 
Note also that when a = 0, Eiqs.(2.2) are integrable in quadratures. The general solu- 

tion of (2.2) can be written in the form (when e# - p and v# 0) 

2ep" = u= + cu-we - VW (e + fP) f2.8) 

where C is the arbitrary constant of integration. 
We would point out that the analysis of properties of singular points (2.4) was carried 

out in the plane @, X). In the projection on the plane (v, p) the type of singular points 
is retained, and the characteristic directions prove to be parallel to the p- and v-axes. 

The presence of singular points (2.4) in the considered system of equations is related 
to that Eq.(l.l) has a single characteristic velocity which in the moving coordinate system 
is v= u - U. Where that characteristic velocity vanishes, the steady solutions of the 
equation have singular points similar to those occurring in hyperbolic systems of equations 
and in equations with parabolic degeneration. Such singularities were investigatedindetail 
in /U-13/ in the case of hyperbolic systems of general form and of a number of specific 
problems. 

3. Let us show the qualitative patterns of integral curve behavior in the phase plane 
for several of characteristic cases considered above. The respective numerical steady solu- 
tions of Eq.U.1) were obtained, using the implicit divergent difference scheme in which ap- 
proximation of derivatives with respect to z in each secular layer was effected using sym- 
metricdifferenceson a five point pattern /l/. 

Consider the problem of evolution of the front when initial data are specified by the 
distribution 

II (r, 0) = Ii - th(kz)]J 2 (3.1) 
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where k= const defines the initial front curvature. Solution of the quasi-linear first order 
equation (1.2) with initial data (3.1) assumes in the course of time a steady discontinuous 
profile representing a jump of function u from 0 to 1 and moving at velocity L: = 0.5 in the 
direction of increasing 5, Solution of the Burgers equation (1.3) with input data (3.1) also 
assumes a steady profile in the form of a monotonic function. In the phase plane of variables 
u = u - u and p = dz4d-X a section of parabola p = (9 -- tP)/(2a) for p,<O corresponds to that 
solution. 

Fig.2 

A qualitative pattern of integral curve behavior in the (~,p) phase plane isshowninFig.1 
for the quasi-linear third order equation (1.1) when $>O and c@>@Ue. The separatrices 
that pass through singular saddle points are shown there by heavy lines, and the dash line 
represent the isocline of zero angles of inclination of integral curves defined by the equa- 
tion US+ 2epr- 29 = U* of the ellipse. In this case we have a monotonic steady solution in 
the form of the front transition from I= P to zs= 0 moving at velocity U= 0.5 which is 
the same as that of the discontinuous solution of Eq.(1.2). The section of the separatrix of 
saddle 3 which connects the singular nodal points 1 and 2 corresponds to that solution in the 
phase plane. Owing to the symmetry of integral curves relative to the ordinate axis only re- 
gion P>O is shown in Fig.1 and subsequent. The dependence of steady distribution of u on 
coordinate X, obtained by numerical integration of (1.1) for coefficients @ = B = 0.01 and 

a = 0.1 and input data (3.1) is also shown in Fig-l, where (and subsequently) function U= 14(.X) 
is only constructed for X&O. 

The integral curves shown in Fig.2 relate to the case of t3>0 and a<4fW. All nota- 
tion in this and subsequent figures conforms to that in Fig.1. In this case the steady solu- 
tion in the transition zone of the shock wave is not monotonic and contains symmetric 

oscillationsthatare damped with increasing distance from the basic front. The integral curve 
which represents transition from u=l to u=o is a separatrix passing through the singular 
point 3. The respective steady numerical solution of Eq.(l.l) is also shown in Fig.2 for B- 
E = 0.01 and C( = 0.01. 

The integral curves and numerical solution for p= B= 0.01 and a= @ are shown in Fig.3 
for the case when singular points on the ho$.zontal axis become centers. In that case the 
steady solution has undamped oscillations thatpropagate on X toinfinityinboth thepositive and 
negative directions. When x =O we have a transition front stipulated in the input condit- 
ions. The motion along the separatrix of saddle 3 from point A to point 3 lying symmetrical- 
Ly relative to the coordinate origin, then, as X++a, the periodic motion from point R to 

point 4, from point 4 along another separatrix U= 0 to point 3, from point 3 to point 4 

through point 3, etc., corresponds to that front in the.phase plane (v,P~ . when X----a3 
the motion is along the integral curve symmetric relative to the p-axis. 

Let us now consider the case of f!<O to which corresponds the field of integral Curves 
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shown in Fig.4. In this case the solution for input data,(3.1) is defined by the integral 
curve issuing from saddle 1 and entering saddle 2 through node 5. The corresponding num- 

erical solution which is a monotonic function and defines the transition front from u==t to 

u=O is shown in Fig.4 for 8=-O.Oi,e=Ifl1/2 and a = 0.01. 

U 

B I 1 

-0.2 -0.1 LOX+ 0.2 x 

Fig.5 

Fig.3 Fig.4 

As e+O two singular points on the p-axis approach, respectively, r 00. and thetran- 
sition front length along the x-axis diminishes (the front slope increases). When coeffic- 
ients a and 8 simultaneously approach zero, the considered above solutionsofEq.(l.l)become 
the corresponding discontinuous solution of Eq.(1.2). If then the condition u*>48U remains 
valid, the obtained sequence of solutions is defined by monotonic functions, while in the op- 
posite case we have a sequence of solutions with symmetrically damped ocillations. 

Equation (1.1) has besides steady solutions of the type of shock wave transition zone 
when p<O has steady solutions in the form of solitones, /l/. Such steady solution with 
amplitude equal unity propagating at the velocity U= 0.67 calculated for a=0 and %=2c= 
0.001. In Fig.4 in the phase plane to that solution correspond the following sectionsofintegral 
curves: the separatrixofsaddle 2 which connects it to node 4, then one of the integral curves 
that connect nodes 4 and 3 when O<v< U and, finally the separatrix of saddle 2 which passes 
through node 8 and saddle 2. To these three sections of integral curves correspond the fol- 
lowing values of x:-w<XXX-,X_<X(X+, X+<X<m (Fig.5). Due to the presence in the 
phase plane of singular nodal points 3 and 4, Eq.(l.l) has an infinite number of various soli- 
tone solutions moving at the same velocity U when 8<0. 

We note in concluding that the steady solutions of equations investigated here substant- 
ially differ from those of the Korteweg-de Vries -Burgers equation /14,15/, as well as from 
the regularized equation for long waves /3/ whose steady solution structure is similar to that 
of 

1. 

2. 

3. 

4. 

the Korteweg-de Vries equation. 

The authors thank A. G. Kulikovskii for valuable advice and interest-in this work. 
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